
 

Parallel Brain Network Analysis Platform Manual 

This platform aims at accelerating the frequently used but time-consuming 

algorithms in neuroscience research. We have accelerated the process of brain network 

analysis (BNA) with NVIDIA GPUs (Graphic processing unit) and multi-core CPUs. The 

toolbox provides functions for the construction and the analysis of large networks. 

Network construction is intended for fMRI data using Pearson’s correlation. Network 

analysis is general purposed and includes the calculation of clustering coefficient, 

characteristic path length, network efficiency, and betweenness centrality (and 

comparisons to Maslov random networks). We accelerate Pearson’s correlation 

calculation, APSP and betweenness with GPUs. Other functions are implemented on 

multi-core CPUs. If you found the platform useful, please cite our paper published on 

plos one  

Wang Y. et al, (2013) A Hybrid CPU-GPU Accelerated Framework for Fast Mapping 

of High-Resolution Human Brain Connectome. PloS one 8:e62789. 

 

Runtime Environment 

The win64 version requires a 64-bit Windows operating system, an NVIDIA GPU 

and the latest CUDA Toolkit 

(http://www.nvidia.com/content/cuda/cuda-downloads.html). We have tested all the 

functions on NVIDIA GTX 580 GPU with CUDA Toolkit v5.5 and Windows 7 operating 

system. 

The Linux version requires a Linux operating system, an NVIDIA GPU and the latest 

CUDA Toolkit (http://www.nvidia.com/content/cuda/cuda-downloads.html). We have 

tested all the functions on NVIDIA Titan GPU with CUDA Toolkit and CentOS 6.5 

operating system. 

 To get started with CUDA, please follow  

NVIDIA CUDA Getting Started Guide for Microsoft Windows  

(http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/index.

html) or 

NVIDIA CUDA Getting Started Guide for Linux 

(http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html). 

 

Function Interface 

1. CUCorMat() 

Note that this new version of CUCorMat() has made a few changes of parameters. 

 

CUCorMat Dir_for_BOLD threshold_for_mask(0~1) to_average(yf/yn/bf/bn/n)

 to_save_cormatrix(y/n) threshold_type(r/s) threshold_for_correletaio

n_coefficient(s)(0~1) 

 

This function constructs correlation matrices from BOLD signals on GPU. There are 

at least six inputs: 1) a directory containing NII files of BOLD signals and a gray matter 



 

mask file named “mask.nii” (data type: float or boolean, can be recognized automatically), 

2) a threshold to select valid voxels, 3) a flag indicating whether or not the correlation 

matrices are to be averaged, and 4) a flag indicating whether or not the original results 

are to be saved, 5)threshold_type indicates the binary_threshold is for correlation values 

or sparsities, 6) at least one threshold for binarizing the correlation coefficients. The 

outputs are adjacency matrices in .csr files and upper-triangle matrices in .cormat files, if 

enabled. 

Both weighted and unweighted networks are supported for function CUCorMat. 

 

Parameter Meaning 

Dir_for_BOLD 

The input directory containing NII files of BOLD signals. 

In the directory, there has to be a file named ‘mask.nii’, 

which gives the probability of each voxel belonging to the 

gray matter. All the NII files must be little-endian 

(ieee-le) and the data type must be 32-bit real 

(single-precision floating point numbers). 

threshold_for_mask 

A threshold to select valid voxels from ‘mask.nii’. Data 

type: float or boolean, which be recognized automatically. 

If data type of mask.nii is Boolean or unsigned char, this 

value can be arbitrary from 0~1. 

to_average 

A flag indicating whether or not the correlation matrices 

are to be averaged. If average_flag = ‘yf’ or ‘yn’, all 

correlation matrices are averaged and only one adjacency 

matrix is generated; If average_flag = ‘n’, each NII file for 

BOLD signals corresponds to an adjacency matrix; If 

average_flag = ‘bf’ or ‘bn’, both the individual adjacency 

matrices and the average adjacency matrix are generated. 

The second character ‘f’ or ‘n’ indicates whether fisher 

transformation is used in the process of averaging. 

to_save_cormatrix 

A flag indicating whether or not the original correlation 

matrices are to be saved. If to_save_cormatrix=’y’, both 

the original correlation matrices and the binarized csr 

results will be saved under input directory 

(Dir_for_BOLD). If to_save_cormatrix=’n’, only binarized 

csr results will be saved. These matrices are stored 

in .cormat files. 

threshold_type 

A parameter indicating all correlation matrices are 

thresholded by the same correlation value or the same 

sparsity. For correlation threshold, threshold_type = “r”; 

For sparsity threshold, threshold_type = “s”. 

threshold_for_ 

correletaion_coefficient 

A set of thresholds for binarizing the correlation 

coefficients. Each threshold will generate a set of outputs. 

Example : 

The following command 



 

./CUCorMat ../../data/ 0.2 yn n r 0.25 0.3 0.35 

generates the output files in the directory ../../data/ . 

 

2. CUBFW_Lp(), CUBFS_Lp(), BFS_MulCPU() 

CUBFS_Lp input_dir num_of_random_networks   

#This function is not recommended as it is not stable. 

BFS_MulCPU input_dir num_of_random_networks 

CUBFW_Lp input_dir num_of_random_networks 

 

These three functions calculate the characteristic path length (Lp) of the network and 

compare with K (user specified) random networks on GPU and multi-core CPU. The 

input is 1) a directory containing .csr files, and 2) the number of random networks for 

comparison. The functions will calculate Lp for each network in the input directory. The 

output is a text file for each input network, storing the Lp results of the brain network and 

K random networks (one file for each .csr network). 

Lp is the harmonic average of All-Pairs-Shortest-Path (APSP), and also the reciprocal 

of global efficiency. The two functions use different algorithm to calculate APSP. 

CUBFS_Lp() and BFS_MulCPU() implement the Breadth First Search (BFS) algorithm, 

which performs well with sparse networks but poorly with dense ones, on GPU and 

multi-core CPU respectively. The performance of these two functions is comparable with 

each other. We suggest using the latter one if you have a more than 8 cores CPU. 

CUBFW_Lp() uses the blocked Floyd-Warshall algorithm (BFW), which outperforms BFS 

on dense networks. The transition point of the performance of the two algorithms is 

approximately where network density equals 3%. It means CUBFS_Lp() is recommended 

if the network density is lower than 3% and CUBFW_Lp() is recommended if otherwise. 

Both weighted and unweighted networks are supported for function CUBFW_Lp. 

Only unweighted networks are supported for BFS-based functions. 

 

Parameter Meaning 

input_dir The input directory containing .csr binary networks. 

num_of_random_networks The number of random networks with the same 

degree distribution for comparison. If 

num_of_random_networks == 0, no comparison is 

initiated. 

 

Example： 

The commands 

./CUBFW_Lp ../../data/ 15 

./CUBFS_Lp ../../data/ 15 

generates both .eff files storing the nodal efficiency and _Lp.txt for LP. 

 

3. Cp() 

Cp input_dir num_of_random_networks 

 



 

This function calculates clustering coefficient (Cp) of the network and compare the 

results with K (user specified) random networks on CPU. The input is 1) a directory 

containing .csr files, and 2) the number of random networks for comparison. The 

functions will calculate Cp for each network in the input directory, generating .cp files for 

each input network. 

Both weighted and unweighted networks are supported for function Cp. 

 

Parameter Meaning 

input_dir The input directory containing .csr binary networks. 

num_of_random_networks The number of random networks with same degree 

distribution for comparison. If 

num_of_random_networks == 0, no comparison is 

initiated. 

Example: 

./Cp ../../data/ 15 

 

4. Degree() 

Degree input_dir 

This function calculates the degree centrality of the network on CPU. The input is a 

directory containing .csr files. The functions will calculate degree centrality for each 

network in the input directory, generating .deg files for each input network. There is only 

the CPU version. 

Both weighted and unweighted networks are supported for function Degree. 

 

Parameter Meaning 

input_dir The input directory containing .csr binary networks. 

 

Example: 

./Degree ../../data/ 

 

5. CUBC() 

CUBC input_dir 

This function calculates the betweenness centrality of the network on GPU. The input 

is a directory containing .csr files. The functions will calculate betweenness centrality for 

each network in the input directory, generating .bc files for each input network. 

Only unweighted networks are supported for CUBC functions. 

 

Parameter Meaning 

input_dir The input directory containing .csr binary networks. 

 

Example: 

./CUBC ../../data/ 

 

6. ConvertNII() 



 

ConvertNII  input_file  mask_file  mask_threshold 

This function puts the .cp .eff .deg .bc results back to the 3-D matrix and converts 

these filesto the standard NII format. The inputs are: one of the mentioned files, a file for 

mask data in NII format and a threshold to select the voxels. The mask file and the mask 

threshold should be the same as those used in network construction with CUCorMat(). 

Both weighted and unweighted networks are supported for function ConvertNII. 

 

Parameter Meaning 

input_dir The input directory containing files to be converted to NII 

format. 

mask.nii The name of NII file in the input directory giving the probability 

of each voxel belonging to the gray matter. 

mask_threshold A threshold to select valid voxels from ‘mask.nii’, if the datatype 

of mask_nifti file is float. If the datatype is unsigned char, an 

arbitrary value from 0~1 is available. 

Example: 

./ConvertNII ../datadir ../maskdir/mask.nii 0.2 

X.cp should exist in the specified directory. The output file X.cp.nii is generated in 

directory ../datadir/ . 

 

7. Louvain_Modularity () 

Louvain_Modularity dir_for_csr num_of_random_networks 

This function calculates Louvain Modularity for each of the .csr files in the given 

directory and compares each of them with several optional random networks. The 

outputs are .modu files in the date directory. 

Both weighted and unweighted networks are supported for function 

Louvain_Modularity. 

 

Parameter Meaning 

input_dir The input directory containing .csr binary networks. 

num_of_random_networks The number of random networks with same degree 

distribution for comparison. If 

num_of_random_networks == 0, no comparison is 

initiated. 

Example: 

./Louvain_Modularity ../../data/ 15 

 

8. PC_CPU() 

PC_CPU dir_for_csr type_for_participant_coefficient 

This function calculates participant coefficient for each subject (“.csr” files) in the 

given directory. Each “.csr” files should be accompanied with a “.modu” files, which has a 

same file name, in the data directory. The type of participant coefficient is original as 

default and is normalized by (Nm-1)/Nm where Nm is the number of modules if this 

option is set as ‘n’. The outputs are .pc files in the date directory. 



 

Both weighted and unweighted networks are supported for function PC_CPU. 

 

Example: 

./PC_CPU.exe ../../data/   #(output original participant coefficient) 

./PC_CPU.exe ../../data/ n #(output normalized participant coefficient) 

 

File Format 

The input files in the first procedure CUCorMat and the output files of our platform 

are all standard NII files with some extra restriction. Here we also introduce the format of 

other related files of our platform for the convenience of some users who may want to 

process these intermediate results.  

 

1．The original input 

NII files for BOLD signals and mask data. Little-endian (ieee-le) NII files with 

single-precision floating point numbers (float) are required.  

 

2．CSR 

.csr file (Compressed Sparse Row). The first 32-bit integer indicates the length of 

array R , which is the number of voxels N+1, followed by N+1 32-bit integers of the array 

R. Next is a 32-bit integer indicating the length of array C, which equals the number of 

edges E, followed by E 32-bit integers of the array C. That’s all for the unweighted 

network. If the network is weighted, the final part is a 32-bit integer indicating the length 

of array V, which also equals the number of edges E, followed by E 32-bit floats of the 

array V, indicating the weight of each edge remained after thresholding). 

 

3．Characteristics results 

.deg .cp .eff .bc .modu .pc, files with the first 32-bit integer indicating the number of 

voxels N, followed by N integers (nodal degree (.deg), if the network is unweighted, 

module index (.modu)), or N float numbers (nodal degree (.deg, if the network is 

weighted) clustering coefficient (.cp), nodal efficiency (.eff), betweenness centrality (.bc), 

or participant coefficient (.pc)) representing the corresponding characteristics of that 

voxel. 

 

4. Correlation matrices 

.cormat files begin with a 32-bit integer indicating the number of following numbers, 

which equals N(N-1)/2 if N is the number of rows or columns. These correlation indexes 

are 32-bit float numbers. Note that correlation matrices are symmetric and we only stores 

the upper-triangle part. 

 

5．Output NII file 

All the result files .deg .cp .eff .bc .pc are converted to standard NII file using 

ConvertNII(). 


